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Abstract-Numerical studies are made of the flow of a viscous thermally-stratified fluid in a square 
container. The flow is driven by the top lid of the container, which executes torsional oscillations. A 
stabilizing vertical temperature difference (TH - Tc) is applied on the horizontal boundary wails ; the two 
vertical side walls are thermally insulated. Numerical solutions are secured to the time-dependent Navier- 
Stokes equations under the Boussinesq-fluid approximation. Details of unsteady flow and thermal fields 
are exhibited over broad ranges of three principal parameters, i.e. the Reynolds number Re, the Grashof 
number Gr, and the frequency ratio 0’. Of particular interest is the possibility of resonance; this gives rise 
to intensification of flows in the interior and associated augmentation of convective heat transport. 
Systematically-organized computational results indicate that the existence of resonance is verified, and the 

enhancement of heat transfer is demonstrated at particular values of 0’. 

1. INTRODUCTION 

THE FLOW of an incompressible viscous fluid, of kine- 
matic viscosity v, in a closed cavity poses a classical 
problem. The basic configuration consists of the flow 
in a square cavity of size L; the flow is driven by the 

top lid which slides at uniform speed Cl, in its own 

plane. The geometry is simple and the boundary con- 
ditions are regular; this flow has served as a bench- 

mark for numerical as well as experimental model 

validations. The major characteristics have been 
clearly identified and plausible physical explanations 

have been rendered for this flow model [l-14] over a 
broad range of the Reynolds number Re = UOL/v. 

The unsteady driven-cavity flows have received 
relatively little attention, although unsteady flows are 
of frequent occurrence in engineering applications. 

The flow properties developed in the cavity when 
the sliding lid executes a torsional oscillation, u = 

U0 sin it, present a canonical model for unsteady 
driven-cavity problems. In this case, the frequency 

parameter, w’ = w/( V,/L), emerges to be a principal 
non-dimensional parameter, in addition to the above- 
defined Reynolds number. 

Some of the basic features of this particular 
unsteady flow were explored recently by Soh and 
Goodrich [ 151. However, the primary purpose of Soh 
and Goodrich was to establish the computational val- 
idity of a new numerical scheme by using this unsteady 

flow as an example. Iwatsu et al. [16] provided a 
comprehensive numerical solution to the full time- 

dependent Navier-Stokes equations in order to illumi- 
nate the prominent characteristics of this unsteady 
driven-cavity flow. It was shown that the overall flow 

properties display marked qualitative differences as 
the two governing parameters, Re and w’, encompass 

wide ranges. In the low-frequency regime (w’ small), 

much of the flow in the bulk of the cavity is affected 
by the torsional oscillation of the lid. On the contrary, 

when w’ is large, the fluid motion is confined to a 

narrow layer adjacent to the oscillating lid. When w’ 
is intermediate, the effect of the confining side walls is 

pronounced ; in this regime, significant changes are 

discernible between the low-Re and high-Re limits. 
The numerical solutions of Iwatsu et al. [16] laid 

groundwork to comprehend the fundamental dynam- 

ics pertinent to the unsteady flows of this class. 
In this paper, it is proposed that the aforementioned 

unsteady driven-cavity flow model is extended to 
include the buoyancy effect. In general, buoyancy 

inhibits vertical motions; therefore, the global flow 
patterns will be substantially affected by the buoyant) 

effect. From the standpoint of practical engineering 
applications, the introduction of buoyancy brings the 
analysis closer to realistic systems. Specifically, the 
flow configuration is such that the oscillating lid is 
maintained at temperature TH, and the temperature 
at the bottom wall is Tc. T,, > T,; this creates a stably 
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NOMENCLATURE 

gravitational acceleration 
Grashof number, yx(T,, - T,)L”/v’ 

heat flux in the .x-direction (see equation 

(4)) 

T,, 
c’,, 
V 

heat flux in the y-direction (see equation 

(5)) 
depth (width) of the cavity 
Brunt-V&ala frequency. 
[scg( T, - T,)iL] ‘.‘ 

pressure 

Prandtl number, Y/K. 

Reynolds number, CJ,L,/v 
temperature 

Greek 
x 

K 

Q 

temperature of the bottom wall 0’ 

temperature of the top lid 

maximum speed of the top lid motion 
velocity vector, (u. 2,) 

horizontal coordinate (see Fig. 1) 
vertical coordinate (see Fig. I). 

symbols 

coefficient of thermometric expansion 
thermal conductivity 
kinematic viscosity of the fluid 

frequency of the torsional oscillation of the 

top lid 
frequency parameter, (0 L/U,, 

stratified fluid system. The side walls are thermally 
insulated. 

The introduction of the buoyancy effect is char- 
acterized by the Grashof number. Gr = ga(T,- 
T<.)L?/‘i’?, where g is the acceleration due to gravity 

and a the coefficient of thermometric expansion. 
The objective of the present analysis is to examine 
the flow and heat transfer characteristics of this 

unsteady stratified fluid system. This has practical 
implications. It is well known that the heat transfer 
of a confined fluid system can be greatly augmented 
by inducing convective activities ; by this method, the 
heat transfer rates at the surface walls can exceed the 

values obtainable by the conductive mode alone. In 
other words, the present study is also motivated by 

the possibility of heat transfer enhancement in the 
cavity by forcing the top lid to oscillate at an appro- 
priate frequency. 

The strength of a stratified fluid is often measured 
. 

by the Brunt-Vaisala frequency, IV = ]tig(TH- 

T,-)/L] ’ ‘, which represents one natural frequency of 
the physical system. A perusal of the problem for- 
mulation suggests a possible resonance when the 
values of the externally-forced frequency o and the 
natural frequency of the system are related to each 

other. When such resonance phenomena are indeed 
realized, convective flows are intensified and, conse- 
quently, the accompanying heat transfer augmenta- 
tion may be materialized. 

In the present work, extensive numerical solutions 
are acquired to the unsteady driven-cavity flows when 
a vertically-stabilizing temperature gradient is im- 
posed. It is shown explicitly that both the flow and 
heat transfer characteristics are substantially altered 
when (0 takes values such that resonance can be 
expected in this stratified fluid system. The wealth of 
numerical data permits a systematic evaluation of flow 
intensification and heat transfer augmentation as w’ 
covers a broad range. The present investigation 
intends to demonstrate, by resorting to numerical 

simulations, heat transfer enhancement in a confined 

cavity. The results of the numerical solutions clearly 
point to the fact that, at high Grashof numbers, heat 
transfer rates can be substantially increased by choos- 

ing a proper value of (0 such that the resonance con- 
ditions are satisfied. These findings are qualitatively 
consistent with the elementary physical argument. 

2. NUMERICAL MODEL 

The basic equations are the Navier-Stokes equa- 

tions with the Boussinesq-fluid assumption and the 
energy equation. These can be expressed in non- 
dimensional form as 

iV 

div V = 0 

~, + (V * grad)V = -grad p 

(I) 

?T 

+ Rr ‘AV+Gr*Rr ‘Te (2) 

(lt+(V*grad)T= (Pr*Re) ‘AT (3) 

where e = (0, - l), V = (u, L’) is the velocity vector, p 

the pressure and T the temperature. In the above. 
non-dimensionalizations were implemented by using 
L, Uo, L/U,,, and (Tn - Tc) for reference scales for 
length, velocity, time, and temperature, respectively. 
The differential operators are 

A = div - grad. 

The numerical model is a modified version of the 
MAC method [17], with a third-order upwind scheme 
applied to the non-linear terms [ 181. Particular atten- 
tion is given to the choice of difference schemes for 
div, grad and A (scheme 2 of ref. [19] is adopted). The 
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FIG. I. The flow configuration and the coordinate system. 

temperature equation is discretized in accordance with 

the control volume technique. 
The flow configuration and the associate boundary 

conditions are depicted in Fig. I. The boundary con- 
ditions are 

V = (sin (w’t), 0) at y = 1, 0 < x < 1 

V=O at x=O,l,O<y<l 

and y=O,O<x< I 

T=O at j~=O,O<xdl 

T=l at ~=l,O<x<l 

ar 
;Ix=O at x=0 and x=1. 

As is evident in the foregoing formulation, the prob- 
lem is characterized by the following four principal 

dimensionless numbers : the Reynolds number, Re = 
UoL/v ; the frequency parameter w’ = w/( U,/L) ; 
the Grashof number, Gr = ga( T, - T,) L3/v2 ; and the 
Prandtl number, Pr = V/K. 

3. RESULTS 

Complete calculations have been made for a total 
of 40 cases. Three specific values of Re were chosen : 
Re = 400,lOOO and 2000. The range of Gr was Gr = 0 
to 106; the values of w’ were 0.1 < w’ < 10.0. The 
Prandtl number was fixed at Pr = 0.71. 

The numbers of grid points were 65 x 6.5 and 

129 x 129 for the cases of Re = 400, and Re = 1000 
and 2000, respectively ; the time interval At was taken 
as either (2n/0~‘)/1000 or (2n/w’)/4000. These were 
supposed to provide sufficient resolution to the 
numerical results. The typical CPU time per case of 
computation was about 10 min to 2 h on the VP- 

200/400 super-computer system. 

Several test calculations have been made in order 
to appraise the reliability and accuracy of the present 
numerical solutions. Computations were carried out 
to reproduce the sample results obtained by Soh and 
Goodrich [15] ; these efforts demonstrated close agree- 
ment between the present results and the solutions 
of Soh and Goodrich. The grid-dependency of the 
numerical results has been assessed systematically. 

In the actual implementations of the numerical 

computations, at the initial state, the fluid was 

motionless and the linear temperature stratification 

(T = y) prevailed throughout the whole domain. 
Calculations were carried out, marching in time, 
until a sufficient number of quasi-periodic cycles were 
repeated. In most cases, the quasi-periodic steady- 
state, having the frequency of the forcing frequency, 
o, was attained about three to six cycles after the 
initiation of the flow. The computed flow maintained 
high degrees of cyclic regularity after the quasi-per- 
iodic steady-state was reached. In the present results, 

typically about 20 cycles were computed in the quasi- 
periodic steady-state. The transitory approach to the 
establishment of the quasi-periodic state is not of pri- 

mary concern in the present account. 
The grid-convergence tests, both in space and time, 

have been performed by employing several different 
mesh networks. The outcome of these elaborate sensi- 

tivity tests to the grid proved to be highly satisfactory. 

For instance, at Re = 1000, the discrepancy in the 
results obtained by using the grids (129 x 129) and 
(257 x 257), was smaller than 0.1% (see Iwatsu et al. 
[ 161). Based on extensive test calculations, the present 
numerical method is believed to possess high degrees 
of accuracy and reliability. 

First, the effect of buoyancy is scrutinized. In 
general, the role of buoyancy is to inhibit vertical 

motions of a stratified fluid system. Figure 2 clearly 
exemplifies this trend, showing the profiles of the ver- 
tical velocities along the mid-height (y = 0.5). The 
suppression of vertical velocities is apparent as Gr 
increases. In general, the effect of buoyancy, relative 
to the forced convection stemming from the lid oscil- 
lation, can be measured by Gr/Re’. The inhibition of 
vertical velocities for Gr = 10“ is not noticeable; in 

this case. Gr/Re’ is small, and the overall impact of 
buoyancy is still minor. The weakening of the vertical 
motions due to buoyancy is evident for higher values 

of Re (see, e.g. Fig. 3 for Re = 103). 
Now, let us turn to the question of the effect of the 

frequency parameter, w’. For an unstratified system 
(N = 0, Gr = 0), lwatsu et al. [16] asserted that the 
global flow structure depends crucially on the fre- 

quency parameter. When w’ is very small, the bulk of 
the interior flow field is influenced by the oscillatory 
motion of the top lid. On the contrary, when w’ is 
large, the lid motion affects only the fluid confined in 
a shallow layer adjacent to the top lid. In the present 
problem of a stratified fluid system, much of the above 

statement is equally applicable in a qualitative sense. 
However, in the present system, the fluid is stratified 

[20,21] ; this implies that the system can support inter- 
nal gravity waves with the characteristic frequency of 
0 (N). It is recalled that the present system is viscous 
and non-linear; therefore, the determination of the 
precise characteristic system frequency cannot readily 
be made a priori. However, when the frequency of 
the external excitation, o, is close to the characteristic 
system frequency O(N), it is expected that the interior 
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FIG. 2. Profiles of vertical velocity u along the horizontal mid-height, y = 0.5. during a half cycle of lid- 
oscillation. Re = 400, W’ = 1.0. Times are: (a) 0; (b) r/8 ; (c) 7/4; (d) 3r/8; where r is the period of lid- 

oscillation. T = 271/w’. (a) Gr = 0. (b) Gr = 104. (c) Gr = 106. 

fluid motions will be amplified, and the associated 

convective heat transfer will be augmented. This 
phenomenon is conveniently termed resonance. 

In order to delineate this point, the heat transport 

across the sections of the cavity is plotted in Figs. 4 
and 5. In Fig. 4, the profiles of the heat flux in the x- 
direction 

,=I 
H,(x, t) = 

s ( I,= 0 
-PrRe.uT+; dY (4) 

1 

are displayed. As is discernible, over much of the range 
of w’, the overall heat transport in the x-direction is 
largely contributed by the convection mode. It should 
be stressed that, as exemplified in Fig. 4(d), when 
10’ - 2.0, heat transport is enhanced substantially ; the 
augmentation of convective heat transport is apparent 
around this value of o’, indicating the possibility of 
resonance. It is noteworthy that, as depicted in Fig. 
4(f), when w’ is very high, the excitation of fluid 
motions by the oscillating top lid is confined to a 
narrow layer close to the top lid. In this case, in the 
bulk of the interior region, the fluid is substantially 

motionless and the deviation of the temperature dis- 
tributions from the original, conduction-dominant 
vertically-linear profile is minor. It follows that heat 

transfer becomes rather ineffective, and Fig. 4(f) bears 
out this point. 

Similar, but more convincing, observations can 

be made in Fig. 5. In a manner analogous to (5), 
the overall heat transport in the Y-direction can be 
measured 

r- I 

H, 0’3 t) = 
s L 

ST 
- Pr Re*rT+ \ - ,I ZY 1 dx. (3 

As stressed previously, when w’ is small (see Fig. 

5(a)), the bulk of the interior fluid is appreciably 
affected by the motion of the top lid. The convective 
heat transport is noticeable in much of the entire 
cavity. In the other extreme case of large w’ limit, the 
flow is confined into a narrow zone adjacent to the 
top lid. As ascertained in the above, H,. is close to 

unity (see Fig. 5(f)) in the majority of the cavity 
interior. The above observations concerning the flow 
structure are qualitatively consistent with the general 
behavior of the non-stratified fluid system reported 

earlier (see Iwatsu et al. [ 161). However, for the present 
stratified system, the occurrence of resonance is 
notable. Figure 5(d), for w’ - 2.0, demonstrates that, 
for this particular set of parameters, heat transport 
is substantially enhanced. This enhancement results 

(al (b) 

X X X 

FIG. 3. Same as in Fig. 2, except Re = 1000. (a) Gr = 0, (b) Gr = IO“, (c) Gr = 10”. 
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FIG. 4. Profiles of H,, during a half cycle of lid-oscillation. Re = 1000, Gr = 106. Times are: (a) 0; 
(b) r/8; (c) r/4; (d) 3~/8; where r is the period of lid-oscillation, z = 271/w’. (a) w’ = 0.1, (b) o’ = 0.5, 

(c)w’ = 1.0, (d) w’ = 2.0, (e) w’ = 3.0, (f) w’ = 10.0. 
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FIG. 5. Profiles of &, during a half cycle of lid-oscillation. Re = 1000, Gr = 106. Times are: (a) 0; 
(b) z/S ; (c) r/4 ; (d) 3~/8 ; where t is the period of lid-oscillation, r = 2n/w’. (a) w’ = 0.1, (b) w’ = 0.5, 

(c) W’ = 1.0, (d) w’ = 2.0, (e) w’ = 3.0, (f) w’ = 10.0. 
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from the intensification of convective activities. These 
findings provide evidence that the overall heat transfer 
across the system boundaries can indeed be enhanced 
greatly by choosing appropriate values of the fre- 

qucncy of the external excitations. 
The intensification of the flow due to resonance 

at particular frequencies can also be appreciated by 
inspecting the velocity data. Figure 6 summarizes the 
results of the entire set of computations. The purpose 
of these calculations is to detect the existence of res- 

onance at particular values of the frequency par- 
ameter w’. It is clear in Fig. 6 that Iz~/,,,~,,. representing 
the amplification of the interior flows. peaks only at 
certain particular value(s) of 0~‘. 

For the problem in hand. by undergoing elaborate 
numerical computations. the value(s) of w’ for res- 

(4 

I 0 

0°11 
w’ 

FE. 6. Variations of the magnitude of maximum vertical 
velocity, V, E maxlvl, _ 0 ir witho’. (a) Re = 400, Gr = lob: 

(b) RP = 1000. Gr = IO”: (c) Re = 2000, Gr = IO”. 

(4 2 

\ 
I 0 

01 IO IO 

w’ 

FIG. 7. Variations of the Nussclt number averaged over one 
cycle, A,. at the top lid (J. = 1.0) with w’. (a) Rc = 400, 
G,.= lOh; (b) Re= 1000, Gr= 10’: (c) Re=2000. 

(;r = IOh. 

onance are searched for the given parameters, as dem- 
onstrated in Fig. 6. This will, in turn, indicate the ratio 

N/u) for resonance for that particular system under 
consideration. This information will be useful for sys- 
tem designers with a view toward maximizing the 

convective heat transport deliverable in the system. 
The existence of resonance can also be inferred by 

the heat transfer data. Figure 7 illustrates the behavior 
of time-averaged heat transport, A,, at the top hori- 
zontal wall. It is clear, by inspecting Fig. 7, that sub- 

stantial heat transfer augmentations are noticeable at 
selected values of w’. 

As emphasized earlier, since the system under con- 

sideration is highly non-linear and viscous, a priori 
determination of (N/w) for resonance cannot bc read- 
ily made. However, by plausible physically insightful 
reasoning, certain qualitative trends can be detected. 
Based on the original definitions, it can be rewritten 
that 

Gr = (N/cu)‘Pr- Rr2 cd’. (6) 

If the system were strictly inviscid and linear, res- 
onance would be expected at N/W = 1 .O and at higher 
harmonics. However, in the present realistic system. 
the maximum temperature difference achievable 
within the essentially inviscid interior region in the 
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cavity is smaller than (TH- Tc). Consequently, for cous flow in a cavity, J. Comput. Phys. 12, 348-363 

practical systems, the value of w’ for resonance will (1973). 

be slightly larger than wb which would be obtained 
5. S. Ozawa, Numerical studies of steady flow in a two- 

from equation (6) by setting (N/w) = 1 .O. The numeri- 
dimensional square cavity at high Reynolds numbers, J. 
Phys. Sot. Japan 38,889%895 (1975). 

cal results illuminated in Figs. 6 and 7 are supportive 6. S. Y. Tuann and M. D. Olson, Review of computing 
of this relatively simple physical reasoning. methods for recirculating flows, J. Comput. Phys. 29, I 

In the present work, due to the limitations of com- 19 (1978). 

puter resources, two-dimensional flows have been 
7. A. S. Benjamin and V. E. Denny, On the convergence 

of numerical solutions for 2-D flows in a cavitv at large 
treated. This will depict the eminent qualitative 
features germane to the cavity flows envisioned in the 
present paper. However, in an effort to simulate more 
realistic systems, calculations will be obtained of three- 

dimensional flows. The results of these endeavors 
will be reported in subsequent papers. 

4. CONCLUSION 

The introduction of stable stratification suppresses 
vertical motions. The present results illustrate that 
vertical motions weaken as Gr/Re2 increases. 

When the frequency parameter w’ is small, the bulk 
of the cavity interior is affected by the oscillation of 

the top lid. On the contrary, when w’ is large, flows 
are confined to a thin layer adjacent to the top lid. 
The vertical heat transfer in the interior is mostly 
conductive if w’ >> 1. 

The present numerical data exhibited occurrence of 
resonance phenomena when the top lid oscillates at 
particular values of frequency. When the imposed 

frequency of the oscillating lid is close to these values, 
the fluid motion is amplified and the heat transfer 
across the system boundaries is enhanced. 

The numerical results are qualitatively consistent 
with a fundamental physical argument. 
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CONVECTION DANS UNE CAVITE CARREE DIFFERENTIELLEMENT CHAUFFEE, 
AVEC UN COUVERCLE OSCILLANT DANS SON PLAN 

R&sum&On ktudie numkriquement 1’Ccoulement d’un fluide visqueux stratifit thermiquement dans un 
rCservoir carrk. L’icoulement est produit par des oscillations de torsion du couvercle. Une difftrence de 
tempkrature verticale stabilisatrice (rn- rc) est appliquie sur les parois horizontales; les deux parois 
IatCrales verticales sont thermiquement isolBes. Des solutions numtriques sont obtenues dans l’ap- 
proximation de Boussinesq pour les Cquations de Navier-Stokes dkpendantes du temps. On d&gage des 
particularit& des champs thermiques et dynamiques pour un large domaine des trois paramktres : le nombre 
de Reynolds Re, le nombre de Grashof Gr et le rapport de friquence 0’. 11 y a une possibilitk de rtsonance 
qui conduit i une intensification de 1’8coulement et $ une augmentation corr&lative du transport convectif 
de chaleur. Des risultats de calculs ordonn&s systkmatiquement montrent que l’existence de la rCsonance 

est v&ifite et on obtient un accroissement de transfert de chaleur pour des valeurs particulikres de w’. 



1076 R. IwATsu el al 

KONVEKTION IN EINEM UNGLEICHM&SIG BEHEIZTEN, QUADRATISCHEN 
HOHLRAUM, DESSEN DECKEL TORSIONSSCHWINGUNGEN AUSFfjHRT 

Zusammenfassung-Die Striimung eines viskosen, therm&h geschichteten Fluids in einem quadratischen 
Hohlraum wird numerisch untersucht. Sie wird vom Deckel des Hohlraums angetrieben, welcher Tor- 
sionsschwingungen ausfiihrt. Durch die obere und untere begrenzende Wand wird eine stabilisierende 
senkrechte Temperaturdifferenz (r,,- 7’c) aufgeprlgt : die beiden senkrechten Seitenwande sind war- 
megedammt. Den numerischen Berechnungen liegen die instationsren Navier--Stokes-Gleichunpcn mit dcr 
Boussinesq-Nlherung zugrunde. Das Striimungs- und das Temperaturfeld wird fiir einen weiten Bereich 
der drei grundlegenden Parameter dargestellt : Reynolds-Zahl Re, Grashof-Zahl Gr und Frequenzverhgltnis 
to’. Von besonderem lnteresse ist die MBglichkeit einer Resonanz. Dies fiihrt zu einer Intensivierung der 
Striimung im Inneren und dadurch zu einer VerstCrkung des konvektiven Warmetransports. Systematisch 
durchgefiihrte Berechnungen weisen das Auftreten einer Resonanz nach. auRerdem die damit verbundene 

Erhiihung des Wirmetransports fiir bestimmte Werte von (11’. 

KOHBEKqklJl B HEFPEBAEMOR KBAAPATHOti I-IOJIOCTM C TOPCkfOHHO 
KOJIEBJ-IIO~ERCJI KPbIJIIKOR 

hT~~UCJICHH0 HCCJtCAyCTCn Te’leHWe BR3KOii XOiJWOCTU C TellJIOBOii CTpaTH4HKaUIlei-i B KOHTeii- 

Hepe KsanpaFHoro ceqemin. Teqemie Bbt3blnaeTcK TO~CHOHH~IMH KOJIe6aHHKMH sepmeii KP~~UKU K~H- 

TeiiHepa. Ha ~OpEi3OHTWlbHbIe O~aHH'iEiBalOUlHC CTCHKH HaJlal-aeTCl cTa6KnE3&ipyioqan BepTHKUbHaK 

pa3HOCTb TeMIIepaTYp(T,-T,);ABC BepTHKaJIbHblC 6OKOBbIe CTWKW IIBJUIIOTCR TepMHWCKSi H3OJIHpO- 

BaHHbIMH. nOJIJ"ielibl 'IHCJICHHbIC pClIlCHHI HCCTaUHOHapHblX ypaBHeHHfi HaBbe-CTOKCa B nps6mimce- 
HBH EyccuHecxa. II~HB~~TcK xapaxTepecruxa riecTauIiouapHor0 Tegemix H Tennoablx nonefi arm 
IIIH~oKHXLV~~II~~~H~BH~M~~~H~~T~~~ OCHOBH~IX napaMeTpoB:qmXaPeiiHonbnca Re, YHcna rpacroaa 
Gr,a 0THOUIeHH~'IaCTOT WI. OcoBti HHTCpWIlpeWTaBJIKeT B03MOxHOCTb pC30HaHCa, ‘iT0 IIPHBOAHT K 

HHTeHCBl#IHKiWEiH Te'IeHHii B IIOJIOCTH W CB83aHHOMY C Hefi yLEJlH'ieHHlO KOHBeKTHBHOl-0 TellJIOlle~HOCa. 

Hanaqee ~30HaH~nO~~p~aeTCKCH~eMaT~3HpOBaHHblM~3ynbTaTaM~paC9eTOB;nOKa3aHO,YTO 

npH onpeneneaebrx 3riaqemillx 0’ msze~ ~ecro yt3enHqemie TennonepeHoca. 


